2014 in review

Asisten statistik WordPress.com menyiapkan laporan tahunan 2014 untuk blog ini.

Berikut ini kutipannya:

Satu kereta gantung di San Francisco mengangkut 60 orang. Blog ini telah dilihat sekitar 310 kali di 2014. Jika itu adalah kereta gantung, dibutuhkan sekitar 5 perjalanan untuk mengangkut orang sebanyak itu.

Klik di sini untuk melihat laporan lengkap.


Measuremet Traceability


Guidelines for the determination of calibration
intervals of measuring instruments
Guide pour la détermination des intervalles de calibration
des instruments de mesure
ILAC-G24:2007 / OIML D 10:2007 (E)

Copyright – ILAC ………………………………………………………………………………………………………………… 3
Foreword – OIML ………………………………………………………………………………………………………………… 4
Preamble ……………………………………………………………………………………………………………………………… 5
Purpose ……………………………………………………………………………………………………………………………….. 5
Authorship …………………………………………………………………………………………………………………………… 5
1. Introduction ………………………………………………………………………………………………………………. 5
2. Initial choice of calibration intervals …………………………………………………………………………….. 7
3. Methods of reviewing calibration intervals …………………………………………………………………… 7
Method 1: Automatic adjustment or “staircase” (calendar-time) ………………………………………..8
Method 2: Control chart (calendar-time) ……………………………………………………………………….. 8
Method 3: “In-use” time ……………………………………………………………………………………………… 9
Method 4: In service checking, or “black-box” testing ……………………………………………………. 9
Method 5: Other statistical approaches …………………………………………………………………………. 9
Bibliography ………………………………………………………………………………………………………………………. 11
ILAC-G24:2007 / OIML D 10:2007 (E)
Copyright (ILAC)
© Copyright ILAC 2007
ILAC encourages the authorized reproduction of its publications, or parts thereof, by organizations
wishing to use such material for areas related to education, standardization, accreditation, good
laboratory practice or other purposes relevant to ILAC’s area of expertise or endeavor.
Organizations seeking permission to reproduce material from ILAC publications must contact the
ILAC Chair or Secretariat in writing or via electronic means such as e-mail.
The request for permission should clearly detail:
1) the ILAC publication, or part thereof, for which permission is sought;
2) where the reproduced material will appear and what it will be used for;
3) whether the document containing the ILAC material will be distributed commercially, where it
will be distributed or sold, and what quantities will be involved;
4) any other background information that may assist ILAC to grant permission.
ILAC reserves the right to refuse permission without disclosing the reasons for such refusal.
The document in which the reproduced material appears must contain a statement acknowledging
ILAC’s contribution to the document.
ILAC’s permission to reproduce its material only extends as far as detailed in the original request. Any
variation in the stated use of the ILAC material must be notified in advance in writing to ILAC for
additional permission.
ILAC shall not be held liable for any use of its material in another document. Any breach of the above
permission to reproduce or any unauthorized use of ILAC material is strictly prohibited and may result
in legal action.
To obtain permission or for further assistance, please contact:
The ILAC Secretariat
c/o NATA
PO Box 7507
Silverwater NSW 2128
Fax: +61 2 9743 5311
E-mail: ilac@nata.asn.au
ILAC-G24:2007 / OIML D 10:2007 (E)
Foreword (OIML)
The International Organization of Legal Metrology (OIML) is a worldwide, intergovernmental organization
whose primary aim is to harmonize the regulations and metrological controls applied by the national
metrological services, or related organizations, of its Member States. The main categories of OIML publications
􀂃 International Recommendations (OIML R), which are model regulations that establish the
metrological characteristics required of certain measuring instruments and which specify methods and
equipment for checking their conformity. OIML Member States shall implement these
Recommendations to the greatest possible extent;
􀂃 International Documents (OIML D), which are informative in nature and which are intended to
harmonize and improve work in the field of legal metrology;
􀂃 International Guides (OIML G), which are also informative in nature and which are intended to give
guidelines for the application of certain requirements to legal metrology; and
􀂃 International Basic Publications (OIML B), which define the operating rules of the various OIML
structures and systems.
OIML Draft Recommendations, Documents and Guides are developed by Technical Committees or
Subcommittees which comprise representatives from the Member States. Certain international and regional
institutions also participate on a consultation basis. Cooperative agreements have been established between the
OIML and certain institutions, such as ISO and the IEC, with the objective of avoiding contradictory
requirements. Consequently, manufacturers and users of measuring instruments, test laboratories, etc. may
simultaneously apply OIML publications and those of other institutions.
International Recommendations, Documents, Guides and Basic Publications are published in English (E) and
translated into French (F) and are subject to periodic revision.
Additionally, the OIML publishes or participates in the publication of Vocabularies (OIML V) and periodically
commissions legal metrology experts to write Expert Reports (OIML E). Expert Reports are intended to
provide information and advice, and are written solely from the viewpoint of their author, without the
involvement of a Technical Committee or Subcommittee, nor that of the CIML. Thus, they do not necessarily
represent the views of the OIML.
This publication – reference ILAC-G24 / OIML D 10, Edition 2007 – was developed by the ILAC Accreditation
Committee and by OIML TC 4 Measurement standards and calibration and verification devices. This version
supersedes OIML D 10 (Edition 1984). It was approved for final publication by ILAC in November 2005 and by
the International Committee of Legal Metrology in 2002.
OIML Publications may be downloaded from the OIML web site in the form of PDF files. Additional
information on OIML Publications may be obtained from the Organization’s headquarters:
Bureau International de Métrologie Légale
11, rue Turgot – 75009 Paris – France
Telephone: 33 (0)1 48 78 12 82
Fax: 33 (0)1 42 82 17 27
E-mail: biml@oiml.org
Internet: http://www.oiml.org
ILAC-G24:2007 / OIML D 10:2007 (E)
Guidelines for the determination of
calibration intervals of measuring instruments
This Guidance Document is a revision of OIML D 10. It was drafted by ILAC (International
Laboratory Accreditation Cooperation) and the OIML (International Organization of Legal
Metrology) as a joint venture and is published as such.
It is important to point out that:
• It is not the responsibility of accreditation bodies to teach laboratories how to run their
• It is the responsibility of each individual laboratory to choose to implement any or none of the
methods described in this Document based on its individual needs and its individual
assessment of risks.
• It is also the responsibility of the laboratory to evaluate the effectiveness of the method it
chooses to implement and take responsibility for the consequences of the decisions taken as a
result of the method chosen.
The purpose of this Document is to give laboratories, particularly while setting up their calibration
system, guidance on how to determine calibration intervals. This Document identifies and describes
the methods that are available and known for the evaluation of calibration intervals.
This publication was developed by the OIML and ILAC as a joint venture and as a revision of OIML
D 10. Within ILAC the focal point has been the Accreditation Committee.
1. Introduction
An important aspect for maintaining the capability of a laboratory to produce traceable and reliable
measurement results is a determination of the maximum period that should be permitted between
successive calibrations (recalibrations) of the reference or working standards and measuring
instruments used. Various international standards take this aspect into account, e.g.:
ISO/IEC 17025:2005 [1] contains the following requirements:
Clause 5.5.2: “Calibration programs shall be established for key quantities or values of the
instruments where these properties have a significant effect on the results”.
Clause 5.5.8: “Whenever practicable, all equipment under the control of the laboratory and
requiring calibration shall be labeled, coded, or otherwise identified to
indicate the status of calibration, including the data when last calibrated and
the date or expiration criteria when recalibration is due”.
Clause 5.6.1 “All equipment used for tests and/or calibrations, including equipment for
subsidiary measurements (e.g. for environmental conditions) having a
significant effect on the accuracy or validity of the result of the test,
calibration or sampling shall be calibrated before being put into service. The
ILAC-G24:2007 / OIML D 10:2007 (E)
laboratory shall have an established program and procedure for the
calibration of its equipment.”
Note: Such a program should include a system for selecting, using, calibrating,
checking, controlling and maintaining measurement standards, reference
materials used as measurement standards, and measuring and test equipment
used to perform tests and calibrations.
ISO 9001:2000 [10] contains the requirement:
Clause 7.6: “Where necessary to ensure valid results, measuring equipment shall:
a) be calibrated or verified at specified intervals, or prior to use, against
measurement standards traceable to international or national measurement
standards; where no such standards exist, the basis used for calibration or
verification shall be recorded”.
Note: This Document focuses on the determination of calibration intervals of measuring
instruments. The methods described can also be used in an appropriate manner for reference
standards, working standards, etc., which are under the control of the laboratory.
In line with the terminology of the VIM [11], the term “measuring instrument” is used instead of
“measuring equipment” in this Document.
The general purpose of a periodic calibration is:
• to improve the estimation of the deviation between a reference value and the value obtained using a
measuring instrument, and the uncertainty in this deviation, at the time the instrument is actually
• to reassure the uncertainty that can be achieved with the measuring instrument; and
• to confirm whether or not there has been any alteration of the measuring instrument which could
introduce doubt about the results delivered in the elapsed period.
One of the most significant decisions regarding the calibration is “When to do it” and “How often to
do it”. A large number of factors influence the time interval that should be allowed between
calibrations and should be taken into account by the laboratory. The most important factors are:
• uncertainty of measurement required or declared by the laboratory;
• risk of a measuring instrument exceeding the limits of the maximum permissible error when in use;
• cost of necessary correction measures when it is found that the instrument was not appropriate over
a long period of time;
• type of instrument;
• tendency to wear and drift;
• manufacturer’s recommendation;
• extent and severity of use;
• environmental conditions (climatic conditions, vibration, ionizing radiation, etc.);
• trend data obtained from previous calibration records;
• recorded history of maintenance and servicing;
• frequency of cross-checking against other reference standards or measuring devices;
• frequency and quality of intermediate checks in the meantime;
• transportation arrangements and risk; and
• degree to which the serving personnel are trained.
ILAC-G24:2007 / OIML D 10:2007 (E)
Although the cost of calibration cannot normally be ignored in determining the calibration intervals,
the increased measurement uncertainties or a higher risk in terms of measurement quality and services
arising from longer intervals may mitigate against the apparently high cost of a calibration.
The process of determining calibration intervals is a complex mathematical and statistical process
requiring accurate and sufficient data taken during the calibration process. There appears to be no
universally applicable single best practice for establishing and adjusting the calibration intervals. This
has created a need for better understanding of the calibration interval determination. As no single
method is ideally suited for the whole range of measuring instruments, some of the simpler methods of
assigning and reviewing the calibration interval and their suitability for different types of instruments
are covered in this Document. The methods have been published in more detail in certain standards
(e.g. [2]), or by reputable technical organizations (e.g. [5], [6], [7]), or in relevant scientific journals.
The methods can be used for the initial selection of calibration intervals and the readjustment of these
intervals on the basis of experience. Laboratory-developed methods or methods adopted by the
laboratory may also be used if they are appropriate and if they are validated.
The laboratory should select appropriate methods and should document those used. Calibration results
should be collected as historical data, in order to base future decisions for calibration intervals of the
Independently from the determined calibration intervals, the laboratory should have an appropriate
system to ensure the proper functioning and calibration status of the standards and measuring
instruments used between calibrations (see Clauses 5.5.10 and of ISO/IEC 17025:2005).
2. Initial choice of calibration intervals
The initial decision in determining the calibration interval is based on the following factors:
• the instrument manufacturer’s recommendation;
• expected extent and severity of use;
• the influence of the environment;
• the required uncertainty in measurement;
• maximum permissible errors (e.g. by legal metrology authorities);
• adjustment of (or change in) the individual instrument;
• influence of the measured quantity (e.g. high temperature effect on thermocouples); and
• pooled or published data about the same or similar devices.
The decision should be made by a person or by persons with general experience of measurements, or
of the particular instruments to be calibrated, and preferably also with knowledge of the intervals used
by other laboratories. An estimate should be made for each instrument or group of instruments as to
the length of time the instrument is likely to remain within the maximum permissible error after
3. Methods of reviewing calibration intervals
Once calibration on a routine basis has been established, adjustment of the calibration intervals should
be possible in order to optimize the balance of risks and costs as stated in the introduction. It will
probably be found that the intervals initially selected do not give the desired optimum results due to a
number of reasons, for example:
• instruments may be less reliable than expected;
• the usage may not be as anticipated;
• it may be sufficient to carry out a limited calibration of certain instruments instead of a full
calibration; and
ILAC-G24:2007 / OIML D 10:2007 (E)
• the drift determined by the recalibration of the instruments may show that longer calibration
intervals may be possible without increasing risks, etc.
A range of methods is available for reviewing the calibration intervals. The method chosen differs
according to whether:
• instruments are treated individually or as groups (e.g. by manufacturer’s model or by type);
• instruments exceed the calibration by drift over time or by usage;
• instruments show different types of instabilities;
• instruments undergo adjustments; and
• data are available and importance is attached to the history of calibration of the instruments.
The so-called “engineering intuition” which fixed the initial calibration intervals, and a system which
maintains fixed intervals without review, are not considered as being sufficiently reliable and are
therefore not recommended.
Method 1: Automatic adjustment or “staircase” (calendar-time)
Each time an instrument is calibrated on a routine basis, the subsequent interval is extended if it is
found to be within e.g. 80 % of the maximum permissible error that is required for measurement, or
reduced if it is found to be outside this maximum permissible error. This “staircase” response may
produce a rapid adjustment of intervals and is easily carried out without clerical effort. When records
are maintained and used, possible trouble with a group of instruments indicating the need for a
technical modification, or preventive maintenance, will be known.
A disadvantage of systems treating instruments individually may be that it is difficult to keep the
calibration workload smooth and balanced, and that it requires detailed advanced planning.
It would be inappropriate to take an interval to extremes using this method. The risk associated with
withdrawing large numbers of certificates issued, or redoing large numbers of jobs may ultimately be
Method 2: Control chart (calendar-time)
Control charting is one of the most important tools of Statistical Quality Control (SQC) and welldescribed
in publications (e.g. [3], [4]). In principle, it works as follows: Significant calibration points
are chosen and the results are plotted against time. From these plots, both dispersion of results and
drift are calculated, the drift being either the mean drift over one calibration interval, or in the case of
very stable instruments, the drift over several intervals. From these figures, the optimum interval may
be calculated.
This method is difficult to apply (in fact it is very difficult to apply in the case of complex
instruments) and can virtually only be used with automatic data processing. Before calculations can
commence, considerable knowledge of the law of variability of the instrument, or similar instruments,
is required. Again, it is difficult to achieve a balanced workload. However, a considerable variation of
the calibration intervals from those prescribed is permissible without invalidating the calculations;
reliability can be calculated and in theory at least gives the efficient calibration interval. Furthermore,
the calculation of the dispersion of results will indicate whether the manufacturer’s specification limits
are reasonable and the analysis of drift found may help in indicating the cause of drift.
Method 3: “In-use” time
This is a variation on the foregoing methods. The basic method remains unchanged but the calibration
interval is expressed in hours of use, rather than calendar months. The instrument is fitted with an
elapsed time indicator and is returned for calibration when the indicator reaches a specified value.
Examples of instruments are thermocouples, used at extreme temperatures, dead weight tester for gas
ILAC-G24:2007 / OIML D 10:2007 (E)
pressure, length gauges (i.e. instruments that may be subject to mechanical wear). The important
theoretical advantage of this method is that the number of calibrations performed and therefore the
cost of calibration varies directly with the length of time that the instrument is used.
Furthermore, there is an automatic check on instrument utilization. However, there are many practical
disadvantages in using an automatic check, including:
• it cannot be used with passive instruments (e.g. attenuators) or standards (resistance, capacitance,
• it should not be used when an instrument is known to drift or deteriorate when on the shelf, or
when handled, or when subjected to a number of short on-off cycles;
• the initial cost of the provision and installation of suitable timers is high, and since users may
interfere with them, supervision may be required which again will increase costs;
• it is even more difficult to achieve a smooth flow of work than with the methods mentioned
above, since the (calibration) laboratory has no knowledge of the date on which the calibration
interval will terminate.
Method 4: In service checking, or “black-box” testing
This is a variation on methods 1 and 2 and is particularly suitable for complex instruments or test
consoles. Critical parameters are checked frequently (once a day or even more often) by portable
calibration gear, or preferably, by a “black box” made up specifically to check the selected parameters.
If the instrument is found to be outside the maximum permissible error by the “black box”, it is
returned for a full calibration.
The major advantage of this method is that it provides maximum availability for the instrument user. It
is very suitable for instruments geographically separated from the calibration laboratory, since a
complete calibration is only done when it is known to be required. The difficulty is in deciding on the
critical parameters and designing the “black box”.
Although theoretically the method is very reliable, this is slightly ambiguous, since the instrument may
be failing on some parameter not measured by the “black box”. In addition, the characteristics of the
“black box” itself may not remain constant.
Examples of instruments suitable for this method are density meters (resonance type); Pt-resistance
thermometers (in combination with calendar-time methods); dosimeters (source included); and sound
level meters (source included).
Method 5: Other statistical approaches
Methods based on statistical analysis of an individual instrument or instrument type can also be a
possible approach. These methods are gaining more and more interest, especially when used in
combination with adequate software tools. An example of such a software tool and its mathematical
background is described by A. Lepek [9].
When large numbers of identical instruments (i.e. groups of instruments) are to be calibrated, the
calibration intervals can be reviewed with the help of statistical methods. Detailed examples can be
found for example in the work of L.F. Pau [7].
Method comparison
No one method is ideally suited for the full range of instruments encountered (see Table 1).
Furthermore, it should be noted that the method chosen will be affected by whether the laboratory
intends to introduce planned maintenance. There may be other factors which will affect the
laboratory’s choice of method. The method chosen will, in turn, affect the form of records to be kept.
ILAC-G24:2007 / OIML D 10:2007 (E)
Method 1
Method 2
Method 3
“in-use” time
Method 4
Method 5 1)
Reliability medium high medium high medium
Effort of application low high medium low high
Work-load balanced medium medium bad medium bad
Applicability with respect
to particular devices
medium low high high low
Availability of instruments medium medium medium high medium
1) Better grading is achieved when an appropriate software tool is used.
Table 1: Comparison of methods reviewing calibration intervals
ILAC-G24:2007 / OIML D 10:2007 (E)
[1] ISO/IEC 17025:2005
General requirements for the competence of testing and calibration laboratories
[2] ISO 10012-1, Edition:1992-01
Quality Assurance Requirements for Measuring Equipment;
Management of Measuring Equipment
[3] Montgomery, D. C.: Introduction to Statistical Quality Control
John Wiley & Sons, 4th ed., 2000
[4] ANSI/ASQC B1-B3-1996: Quality Control Chart Methodologies
[5] Methods of reviewing calibration intervals
Electrical Quality Assurance Directorate
Procurement Executive, Ministry of Defense
United Kingdom (1973)
[6] Establishing and Adjustment of Calibration Intervals
NCSL Recommended Practice RP-1, 1996
[7] Pau, L.F.: Périodicité des Calibrations
Ecole Nationale Supérieure des Télécommunications, Paris, 1978
[8] Garfield, F.M.: Quality Assurance Principles for Analytical Laboratories
AOAC Int., 3rd Edition, 2000
[9] Lepek, A.: Software for the prediction of measurement standards
NCSL International Conference, 2001
[10] ISO 9001:2000
Quality management systems – Requirements
[11] International Vocabulary of Basic and General Terms in Metrology (VIM),
BIPM, IEC, IFCC, ISO, IUPAC, OIML. Published by ISO, Geneva, Switzerland, 2nd ed.,



Dalam era globalisasi, peranan mutu dari suatu produk, sangat penting untuk memenangkan pasar. Pembuktian mutu dari suaru produk memerlukan berbagai sertifikat, antara lain sertifikat hasil uji laboratorium. Sertifikat hasil uji laboroatorium berfungsi sebagai bukti dari mutu suatu produk dan komposisinya, yang pada umumnya disajikan di dalam kemasan produk.
Hasil uji laboratorium merupakan salah satu dokumen penting, oleh karena itu sepatuutnya dikeluarkan oleh laboratorium yang telah terakreditasi oleh Lembaga Internasional seperti Internasional Standard Organization (ISO), atau oleh lembaga yang telah memperoleh kewenangan Internasional untuk mengakreditasi laboratorium di Indonesia, yaitu Komite Akreditasi Nasional (KAN).
Laboratorium yang telah diakreditasi adalah laboratorium yang sudah mendapat pengakuan formal, bahwa laboratorium tersebut mampu melaksanakan pengujian tertentu. Untuk memperoleh akreditasi, laboratorium harus dikelola atau dioperasikan sesuai dengan sistim mutu Internasional yaitu ISO/IEC 17025:2005. Oleh karena itu, Laboratorium yang produk akhirnya adalah data uji yang harus dapat dipertanggung-jawabkan kepada publik, maka keberadaan laboratorium terakreditasi sangatlah penting.
Cukup banyak laboratorium di Indonesia, baik dari lembaga pemerintah maupun swasta, telah melakukan pelayanan pengujian, namun karena operasionalisasi laboratorium belum sepenuhnya memenuhi standar, belum berdasarkan ISO/IEC 17025-2005, maka beberapa prinsip pokok belum dilaksanakan, antara lain penggunaan metoda analisis belum mampu telusur, metoda analisis belum divalidasi, peralatan penting yang sangat mempengarui hasil analisis jarang atau tidak pernah dikalibrasi, uji profisiensi jarang/tidak pernah diikuti, dan kurang memadainya buku petunjuk operasional alat, metoda, dan belum mempunyai panduan mutu, yang menjadi pegangan komitmen dari semua personil laboratorium, dan setiap pekerjaan belum terdekumentasi dengan baik, kinerja dari laboratorium belum terukur, sehingga laboratorium seperti ini belum dapat dipercaya oleh publik.
Salah satu cara untuk membangun kepercayaan pelanggan, dan menghasilkan data yang dapat dipertanggung-jawabkan publik, adalah mengoperasionalkan laboratorium dengan mengikuti standar internasional, yaitu ISO/IEC 17025 : 2005.


Poposal Bimbingan Memperoleh Akreditasi Sistem Mutu Laboratorium berrdasarkan ISO/IEC 17025:2005 ini bertujuan untuk:
1. Memberikan pemahaman personil laboratorium tentang pelaksanaan sistim mutu laboratorium berdasarkan ISO/IEC 17025:2005.
2. Membimbing personil laboratorium membuat dokumen sistim mutu yang terdiri dari: Panduan Mutu (PM), Dokumen Prosedur (DP), Instruksi Kerja (IK) Metoda, IK Alat, IK Personil, dan Formulir; sesuai persyaratan ISO/IEC 17025:2005.
3. Menyusun Struktur organisasi laboratorium mengikuti persyaratan ISO/IEC 17025:2005, lengkap dengan pemahaman uraian tugas dan tanggung-jawab personil inti laboratorium.
4. Menyiapkan sarana dan prasarana fisik laboratorium agar memenuhi persyaratan ISO/IEC 17025:2005.
5. Memberikan pemahaman kepada Personil Laboratorium mengenai prinsip validasi metoda analisis dan pelaksanaannya sesuai persyaratan ISO/IEC 17025:2005.
6. Memberikan pemahaman kepada Personil Laboratorium mengenai prinsip pengendalian mutu internal dan menghitung ketidak-pastian metoda analisis, dan melaksanakannya sesuai dengan persyaratan ISO/IEC 17025:2005.
7. Memberikan pemahaman kepada Personil Laboratorium mengenai prinsip pengelolaan peralatan/instrument, termasuk perawatannya secara periodic, sesuai dengan ISO/IEC 17025:2005.
8. Menyusun program kegiatan dalam rangka persiapan akreditasi yang belum tercakup di dalam proposal ini, seperti pembelian bahan dan larutan acuan bersertifikat, kalibrasi peralatan/instrument dan alat ukur gelas, auditor internal, kemampuan mengkalibrasi alat/instrument analitik secara periodik, pemilihan perusahaan bahan pemasok, dan perusahaan subkontraktor, dll.

1. Personil laboratorium yang memahami prinsip dan pelaksanaan sistim mutu laboratorium berdasarkan ISO/IEC 17025:2005.
2. Dokumen sistim mutu yang terdiri dari: Panduan Mutu, Dokumen Prosedur, IK Metoda, IK Alat, IK Personil, dan Formulir), sesuai persyaratan ISO/IEC 17025:2005.
3. Terbentuknya struktur organisasi laboratorium yang mengikuti persyaratan ISO/IEC 17025:2005, lengkap dengan uraian tugas dan tanggung-jawab personil inti laboratorium.
4. Sarana dan prasarana fisik laboratorium yang memenuhi persyaratan ISO/IEC 17025:2005.
5. Personil Laboratorium yang memahami prinsip validasi metoda analisis dan mampu melaksanakannya sesuai persyaratan ISO/IEC 17025:2005.
6. Personil Laboratorium yang memahami prinsip pengendalian mutu internal dan menghitung ketidak-pastian metoda analisis, dan mampu melaksanakannya sesuai dengan persyaratan ISO/IEC 17025:2005.
7. Personil Laboratorium yang memahami prinsip pengelolaan peralatan/instrument, termasuk perawatannya secara periodic, sesuai dengan ISO/IEC 17025:2005.
8. Program kegiatan dalam rangka persiapan akreditasi yang belum tercakup di dalam proposal ini.

Metoda pelatihannya dilakukan dengan tiga cara, yaitu (1) E-training menggunakan fasilitas elektronik yaitu E-mail; (2) kunjungan ke lokasi / laboratorium untuk melakukan survai kelayakan, penentuan ruang lingkup akreditasi, pembentukan tim persiapan akreditasi, dan pelatihan di depan kelas (kuliah teori dan diskusi); (3) Praktek pembuatan panduan mutu, praktek validasi metoda dan pengendalian mutu internal laboratorium serta penghitungan ketidak-pastian metoda analisis. Disela-sela pekerjaan dalam penyelesaian dokumen mutu dan validasi metoda, E-training tetap dilakukan selama kurun waktu pelatihan yaitu selama 14 Minggu. Diharapkan dengan cara ini penyelesaian persiapan akreditasi dapat dilakukan dengan tuntas. Rincian kegiatan adalah sebagai berikut:
1. Komunikasi awal dalam bentuk E-training ( 2 minggu)
Tim pelatih mengirim kuesioner untuk memastikan kelayakan Laboratorium, dari segi sumber daya manusia, sarana peralatan/instrumen untuk melaksanakan sistim mutu, menentukan ruang-lingkup uji dan menyiapkan materi pelatihan sesuai dengan ruang lingkup uji yang diajukan oleh Laboratorium. Bimbingan awal sesuai dengan ruang lingkup uji, diberikan melalui E-training. Dalam tahap ini Laboratorium diminta untuk membentuk Tim Penyiapan Laboratorium Terakreditasi. Tim mulai bekerja menyusun dan menyiapkan dokumen teknis yang diperlukan, dan persiapan fisik laboratorium. Pada tahap ini, berbagai masalah, tanya jawab/diskusi dilakukan melalui elektronik.

2. Kunjungan Tim Pelatih ke Lokasi/Laboratorium (4 hari).
Setelah E-training diselesaikan dengan baik, dilanjutkan dengan kunjungan Tim Pelatih ke Lokasi/Laboratorium (4 hari). Tim pelatih akan menemui Tim Penyiapan Laboratorium Terakreditasi untuk mengevaluasi Laboratorium, identifikasi sarana dan prasarana, konfirmasi kuesioner yang telah diisi, ruang lingkup uji, dan peralatan yang ada, serta personil Laboratorium yang terlibat dalam penyusunan DOKSISTU. Materi Pelatihan selama kunjungan 4 hari adalah:
– Pemahaman dan Langkah-langkah menuju Akreditasi Laboratorium.
– Pendalaman sistem Manajemen Mutu Laboratorium berdasarkan ISO/IEC 17025:2005.
– Pembuatan Dokumen Mutu berdasarkan ISO/IEC 17025:2005.
– Bimbingan pembuatan dokumen mutu, menyusun Instruksi Kerja Alat, Instruksi Kerja Metoda, Instruksi Kerja Personil, dan pembuatan formulir-formulir yang diperlukan.
Tim Pelatih akan melakukan audit horizontal dan vertikal sambil membimbing Tim Penyiapan Laboratorium Terakreditasi untuk melakukan penyesuaian dengan sistim mutu ISO/IEC 17025:2005. Topik presentasi lainnya adalah:

3. Penyelesaian Dokumen Mutu via E-training (4 mainggu)
Dokumen Mutu yang belum terselesaikan, akan diselesaikan, dikoreksi, dipelajari kembali, dan dikoreksi final melalui E-training. Kemudian dipersiapkan pelatihan lebih lanjut mengenai ‘Pengendalian Mutu Internal, Validasi Metoda, Penghitungan Ketidak-pastian Metoda, dan pengelolaan peralatan/instrument dalam memenuhi persyaratan ISO/IEC 17025:2005.
4. Kunjungan Lanjutan ke Lokasi/Laboratorium, 4 hari.
Selama Kunjungan tersebut dilakukan pemeriksaan/koreksi final dokumen mutu, pembahasan butir per butir, dan simulasi pelaksanaan butir per butir dokumen sistim mutu. Presentasi pemahaman ‘Pengendalian Mutu Internal, Validasi Metoda, Penghitungan Ketidak-pastian Metoda, dan pengelolaan peralatan/instrument untuk memenuhi persyaratan ISO/IEC 17025:2005, beserta praktek analisis untuk dapat membuat laporan kegiatan tersebut. Tim dibimbing untuk menyusun kegiatan yang berkaitan dengan Akreditasi, yaitu mengkalibrasi peralatan/instrument ke Lembaga Kalibrasi yang Terakreditasi, membeli bahan/larutan acuan bersertifikat, pemilihan/penunjukan lembaga pemasok bahan, dan lembaga sub-kontrak pengujian.

5. Pelatihan Akhir dalam bentuk E-training (4 minggu)
Laboratorium diminta untuk menyelesaikan Validasi Metoda, Penghitungan Ketidak-pastian Metoda, dan Pengendalian Mutu Internal pada uji-uji lainnya yang akan diakreditasi. Sistem mutu harus mulai diterapkan. Mengikuti kursus ‘Audit Internal’ yang diadakan oleh Lembaga terakreditasi, dan melakukan kalibrasi peralatan /instrument analitik, membeli bahan/larutan acuan bersertifikat. Laboratorium Peserta diminta untuk melakukan sistim mutu selama 3 bulan, Simulasi menjalankan sistim mutu berdasarkan ISO/IEC 17025:2005. Hal-hal yang masih belum difahami dan diselesaikan, dapat diselesaikan melalui bimbingan via E-mail, sampai siap diakreditasi.
6. Kunjungan akhir selama 4 hari:
Setelah pelaksanaan tahap ke lima diselesaikan, maka Tim akan berkunjung untuk membimbing Tim melakukan Audit Internal dan Kaji-Ulang Manajemen, dan melakukan praktek ’Audit Internal’, sampai dengan pembuatan Laporan Audit Internal. Memperbaiki berbagai temuan, dan diskusi akhir dalam rangka persiapan akreditasi.
7. Pembuatan Laporan Akhir.
Laporan dibuat oleh Tim pelatih, yang meliputi seluruh kegiatan yang dilakukan, kesiapan laboratorium untuk mendapatkan akreditasi dan hal lain sehubungan dengan program berikutnya untuk mendapatkan akreditasi dari Komite Akreditasi Nasional.

Karena tujuan utama pelatihan ini adalah untuk melatih kemandirian Personil Laboratorium dalam melaksanakan sistim mutu, maka bentuk pelatihannya disesuaikan dan penyelesaian kegiatan amat tergantung pada komitmen Tim Penyiapan Laboratorium Terakreditasi dalam menyelesaikan tugas-tugas yang diberikan oleh Tim Konsultan


1. Laboratorium dan personilnya telah mempunyai pengalaman yang cukup, dalam melayani pengujian.
2. Kondisi peralatan/instrumen dalam keadaan baik, tidak rusak, terutama yang berkaitan dengan ruang lingkup uji yang akan diajukan untuk akreditasi.
3. Mempunyai komitmen awal / kemauan untuk menyiapkan dan melaksanakan sistim mutu laboratorium berdasarkan standar internasional (ISO/IEC 19-17025-2005).
4. Mengikuti secara penuh seluruh jadwal pelatihan, dan kegiatan pra-pelatihan yang dilakukan melalui E-training (via email).
5. Memenuhi persyaratan pembiayaan.

Biaya yang dikemukakan disini adalah biaya yang dibutuhkan untuk kegiatan bimbingan penyiapan untuk memmperoleh akreditasi laboratorium. Sedangkan biaya pendaftaran akreditasi ke KAN dan biaya assessment adalah diluar dari rincian berikut ini:
Rincian Pembiayaan:
1. Biaya Bimbingan, besarnya Rp. (Empat puluh lima juta Rupiah), digunakan untuk kegiatan sebagai berikut:
1. Honorarium Penanggung-jawab, Koordinator, Pelatih, Pelaksana, selama pelatihan melalui E-training, maupun kunjungan ke lokasi.
2. Rapat/konsinyasi Tim Pelatih.
3. Perbanyakan makalah / materi bimbingan, dan dokumentasi.
4. Koreksi dokumen mutu, dan pencetakan dokumen mutu.
5. Honor pra-assessment, pada kunjungan terakhir, dan pembuatan laporan akhir Pelatihan.
6. Pendaftaran ke KAN, dan bimbingan dalam mengisi kuesioner dari KAN sehubungan dengan proses akreditasi.
7. Pajak.
Biaya tersebut dibayar dimuka sebesar 60 %, sisanya dilunasi sebelum kunjungan ke tiga, yaitu awal minggu ke 7 dari jadwal Program Pelatihan.
2. Transport dari Bogor ke Lokasi / Laboratorium dan transport local (dari penginapan ke Laboratorium), untuk dua orang pelatih.
3. Akomodasi selama kunjungan bimbingan di Lokasi / Laboratorium (Penginapan dan makan), untuk dua orang pelatih.
4. Biaya lokakarya satu hari yang dihadiri oleh semua personil laboratorium, beserta tim inti, dan personil lain yang sangat terkait dengan program akreditasi laboratorium. Pada umumnya dihadiri oleh 10-15 orang. Biaya digunakan untuk 1 buah spanduk, alat tulis dan kertas (ATK), snack, makan siang, persiapan ruangan, sound system, perbanyakan materi lokakarya, dan sertifikat kehadiran.
5. Biaya Kursus ‘Audit Internal’ yang diadakan oleh KAN atau Lembaga Pelatihan yang telah terakreditasi oleh KAN.
6. Biaya Kalibrasi Peralatan (jumlahnya tergantung pada banyaknya instrument/alat gelas, dan tergantung pada jumlah dan jenis uji yang akan diajukan untuk di akreditasi).
7. Dana untuk pembelian bahan/larutan acuan bersertifikat (jumlahnya tergantung pada jumlah dan jenis uji yang akan diajukan untuk di akreditasi).

8. Biaya pendaftaran Akreditasi ke KAN (Tahun 2004 sebesar Rp.6.500.000,00).
9. Biaya transport dan akomodasi dua orang Asessor dari KAN, bilamana dokumen mutu yang diajukan telah memenuhi persyaratan kelengkapan dokumen (Tergantung dari besarnya ruang lingkup yang diakreditasi, umumnya 2 orang assessor selama 2 hari kerja).

Untuk informasi selanjutnya hubungi Ahmad Masrur HP. 081383245868 atau email : ahmadmasr@yahoo.com


Sebagaimana telah ditentukan didalam klausul ISO/IEC 17025,bahwa laboratorium pengujian dan atau kalibrasi harus mencantumkan laporan perhitungan ketidakpastian di dalam sertifikat hasil uji.

Oleh karena itu kami menawarkan suatu program komputer sederhana yang berbasiskan EXCEL MICROSOFT WORD yang berguna untuk menghitung nilai ketidakpasian secara otomatis.

Cukup mudah untuk digunakan daripada menghitung secara manual,yang akan menghabiskan banyak energi dan waktu yang lama.

Bahkan ada lelucon yang mengatakan bahwa kalo kita menghitung ketidakpastian maka kapan waktu kita untuk bekerja karena membutuhkan banyak waktu.

Untuk pemesanan hubungi Ahmad Masrur di nomor HP 081383245868,atau email : ahmadmasrur@yahoo.com